	Indian Statistical Institute	
	Bangalore Centre	
	Second Semester Examination 2005-2006	
	B.Math. (Hons.) III Year	
Time: 3 hrs	Date: 04-12-2006	Instructor: G Misra

Each question carries 10 marks. The maximum you can score is 40. You may use your class-room notes.

- (1) (i) Let f be an entire function with the property that $\Re f$ is bounded, where $\Re f$ is the real part of f. Show that f is constant
 - (ii) Let f be an entire function with the property that $|f(z)| \ge 1$ for all $z \in \mathbb{C}$. Show that f is a constant function.
- (2) (i) Find a conformal map from \mathbb{D} onto itself with f(0) = 0 and $f(\frac{1}{2}) = \frac{i}{2}$.
 - (ii) Let $g : \mathbb{D}_r(a) \to \mathbb{D}_R(g(a))$ be a holomorphic function. Prove that

$$|g(z+a) - g(a)| \le \frac{R}{r} |z|$$
 for all $z \in \mathbb{D}_r(a)$.

- (3) Find a one to one conformal map of the semi-disc $\{z \in \mathbb{C} : \Im z > 0, |z \frac{1}{2}| < \frac{1}{2}\}$ onto the upper half plane, $\Im z$ is the imaginary part of z.
- (4) Let Ω be a connected open set in \mathbb{C} and assume that $\Omega_0 \subseteq \Omega$ has at least one point of accumulation in Ω . Let $\{f_n\}_{n\geq 1}$ be a sequence of functions holomorphic on Ω which is uniformly bounded on any compact subset of Ω . Suppose that $\{f_n(\omega)\}_{n\geq 1}$ converges for all $\omega \in \Omega_0$ as $n \to \infty$. Then $\{f_n\}_{n\geq 1}$ converges uniformly on compact subsets of Ω .

(Hint: Recall that if \mathcal{F} is a family of holomorphic functions on Ω with the property that for each compact subset $K \subseteq \Omega$, there exists $M_K > 0$ such that $|f(z)| \leq M_K$ for all $z \in K$ and for all $f \in \mathcal{F}$ then \mathcal{F} is a normal family.)

- (5) Let $f : \mathbb{C} \to \mathbb{C}_{0,1}$ be analytic and ϱ be a metric on $\mathbb{C}_{0,1}$ of curvature atmost -1, where $\mathbb{C}_{0,1}$ is the set of all complex number minus $\{1, 0\}$.
 - (a) Show that $f^*(\varrho) \leq \lambda_R$ on any disc \mathbb{D}_R , where $\lambda_R(z) = \frac{2R}{R^2 |z|^2}$ is the Poincare metric of the disc \mathbb{D}_R .
 - (b) Show that $f^*(\varrho) = 0$.
 - (c) Derive Picard's little theorem.